首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   415篇
  免费   35篇
  国内免费   2篇
  2023年   8篇
  2022年   5篇
  2021年   18篇
  2020年   12篇
  2019年   16篇
  2018年   22篇
  2017年   19篇
  2016年   24篇
  2015年   28篇
  2014年   31篇
  2013年   30篇
  2012年   30篇
  2011年   39篇
  2010年   27篇
  2009年   20篇
  2008年   25篇
  2007年   21篇
  2006年   20篇
  2005年   10篇
  2004年   7篇
  2003年   9篇
  2002年   9篇
  2001年   5篇
  2000年   3篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1988年   1篇
  1986年   1篇
  1981年   1篇
  1980年   2篇
  1974年   1篇
排序方式: 共有452条查询结果,搜索用时 31 毫秒
31.
As honeybees are the main pollinator subject to an intense research regarding effects of pesticides, other ecologically important native bee pollinators have received little attention in ecotoxicology and risk assessment of pesticides in general, and insecticides in particular, some of which are perceived as reduced‐risk compounds. Here, the impact of three reduced‐risk insecticides – azadirachtin, spinosad and chlorantraniliprole – was assessed in two species of stingless bees, Partamona helleri and Scaptotrigona xanthotrica, which are important native pollinators in Neotropical America. The neonicotinoid imidacloprid was used as a positive control. Spinosad exhibited high oral and contact toxicities in adult workers of both species at the recommended label rates, with median survival times (LT50s) ranging from 1 to 4 h, whereas these estimates were below 15 min for imidacloprid. Azadirachtin and chlorantraniliprole exhibited low toxicity at the recommended label rates, with negligible mortality that did not allow LT50 estimation. Sublethal behavioural assessments of these two insecticides indicated that neither one of them affected the overall group activity of workers of the two species. However, both azadirachtin and chlorantraniliprole impaired individual flight take‐off of P. helleri and S. xanthotrica worker bees, which may compromise foraging activity, potentially leading to reduced colony survival. These findings challenge the common perception of non‐target safety of reduced‐risk insecticides and bioinsecticides, particularly regarding native pollinator species.  相似文献   
32.
In many parts of the world, replacement of natural grasslands by woody plants has resulted in a decrease of pasture areas and in habitat loss for a variety of animal species, including amphibians. Wetlands are especially susceptible to invasive plants, both native and exotic, but the effects of such invasions on animal assemblages remain poorly understood. Here, we present information on the impact of selected environmental variables, especially coverage by the native shrub Combretum laxum Jacq., on the structure of an anuran assemblage in the Pantanal, a huge flood‐pulsed South American wetland. Anurans were surveyed during the rainy season in 17 plots, which differed in extent of C. laxum coverage, leaf litter volume, soil moisture and distance to permanently wet areas. Effects of these environmental variables on the species number, relative abundance and composition of the anuran assemblage were evaluated using multivariate statistical analyses. We captured 1203 anurans, of 21 species from four families. Both the number of species and the relative abundance of anurans were lower in plots with greater C. laxum coverage, which also influenced anuran species composition. Number of species was highest in plots located closest to permanently wet areas, which provide protection from desiccation and other resources during the Pantanal dry season, and so could be considered source areas of anurans. While many anuran species were negatively affected by the homogenization of the landscape caused by shrub encroachment, some seemed to be favoured in such circumstances. For these, dense shrub encroachment into natural grasslands may provide safer migratory routes to permanently wet habitats. Thus, at the mesoscale, a mosaic of areas with different levels of coverage by C. laxum (shrub islands) may aid anuran assemblages in the Pantanal wetlands, facilitating the maintenance of higher beta and gamma diversity.  相似文献   
33.
Solid dispersions have been used as a strategy to improve the solubility, dissolution rate, and bioavailability of poor water-soluble drugs. The increase of the dissolution rate presented by (5Z)-3-(4-chloro-benzyl)-5-(4-nitro-benzylidene)-imidazolidine-2,4-dione (LPSF/FZ4) from the solid dispersions is related to the existence of intermolecular interactions of hydrogen bond type (>N–H...O<) between the amide group (>N–H) of the LPSF/FZ4 and the ether group (–O–) of the polyethyleneglycol polymer, or the carbonyl (C=O) of the polyvinylpyrrolidone polymer (PVP). The intensity of these interactions is directly reflected in the morphology acquired by LPSF/FZ4 in these systems, where a new solid phase, in the form of amorphous aggregates of irregular size, was identified through scanning electron microscopy and confirmed in the characterizations achieved using X-ray diffraction and thermal analysis of DSC. The solid dispersions with the polymer PVP, in higher concentrations, were revealed to be the best option to be used in the formulations of LPSF/FZ4 in both theoretical and experimental studies.  相似文献   
34.
Potassium (K+) is an important nutrient for plants. It serves as a cofactor of various enzymes and as the major inorganic solute maintaining plant cell turgor. In a recent study, an as yet unknown role of K+ in plant homeostasis was shown. It was demonstrated that K+ gradients in vascular tissues can serve as an energy source for phloem (re)loading processes and that the voltage-gated K+ channels of the AKT2-type play a unique role in this process. The AKT2 channel can be converted by phosphorylation of specific serine residues (S210 and S329) into a non-rectifying channel that allows a rapid efflux of K+ from the sieve element/companion cells (SE/CC) complex. The energy of this flux is used by other transporters for phloem (re)loading processes. Nonetheless, the results do indicate that post-translational modifications at S210 and S329 alone cannot explain AKT2 regulation. Here, we discuss the existence of multiple post-translational modification steps that work in concert to convert AKT2 from an inward-rectifying into a non-rectifying K+ channel.Key words: potassium, channel, potassium channel, AKT2, phloem (re)loading, post-translational modifications, potassium batteryPotassium (K+) is the most abundant mineral element in plants, and together with nitrogen and phosphorous, is limiting for plant production in many natural and agricultural habitats. Voltage-gated K+ channels are key players in the acquisition of K+ ions from the soil and in its redistribution within the plant.1 Structurally, these channels result from the assembly of four so-called α-subunits. The subunits are encoded by nine genes in Arabidopsis and both homo- and hetero-tetramers are expressed.2,3 The K+ channel α-subunits can be categorized into four different subfamilies, based on the voltage-gating characteristics of the exogenous K+ conductance when expressed in an appropriate heterologous expression system. Kin α-subunits form hyperpolarization-activated channels that mediate K+ uptake.47 Kout α-subunits form depolarization-activated channels that mediate K+ release from cells.810 Ksilent subunits appear unable to yield functional homomeric channels, but can combine with Kin subunits and fine-tune the K+-uptake properties of the resulting heteromeric channels.1114 Finally, Kweak α-subunits form channels with complex voltage-gating; they allow both K+ uptake and release.1519 In Arabidopsis, a single member is found in this subfamily, AKT2, and this channel can assemble in heteromeric channels with the Kin subunit KAT2.20To date, only scarce and speculative information has been obtained for the function of Kweak channels. When expressed in heterologous expression systems, two different subpopulations of AKT2 channels differing in their sensitivity to voltage were found.21 Channels of the first type showed gating properties and currents analogous to that of Kin channels, while the other sort enabled a non-rectified (leak-like) current; they were open over the entire physiological voltage range.A given channel can be converted from one type to the other by post-translational modifications.21 A voltage-dependent phosphorylation was found to be an essential step for this switch,22,23 although the kinase responsible for this conversion still needs to be uncovered.24 In biophysical studies, mutant versions of the Arabidopsis Kweak channel subunit AKT2 have been created that showed impaired gating mode settings.22,23 Recently, Gajdanowicz et al. generated transgenic Arabidopsis thaliana plants that express these mutant AKT2 channels in the background of the akt2-1 null-allele plant.25 The major conclusion from analyses of these mutants is that the status switching of AKT2 from an inward-rectifying to a non-rectifying channel is crucial for plants to overcome energy-limiting conditions. This function of AKT2 could be correlated to its expression in phloem tissues. Selective expression of AKT2 under the control of the phloem companion cell-specific AtSUC2 promoter rescued the akt2-1 line, but conversely, selective expression of AKT2 under the control of the guard cell-specific GC1 promoter,26 resulted in further impairment of plant growth (Fig. 1). By combining diverse experimental approaches with mathematical simulation methods, an existing model for phloem (re)loading18,27 was fundamentally improved. This allowed the uncovering of a novel and interesting role of K+ in phloem physiology: K+ gradients present between the sieve element/companion cell (SE/CC) complex and the apoplast can serve as an energy source in phloem (re)loading processes. This “potassium battery” can be tapped by means of AKT2 regulation. This clarifies the observation of Deeken et al.28 that in AKT2 loss-of-function mutant plants, assimilates leaking away from the sieve tube were not efficiently reloaded into the main phloem stream.Open in a separate windowFigure 1AKT2 expressed only in guard cells delays plant development. (A–C) Representative wild-type, akt2-1 and akt2-1+pGC1:AKT2 complementation plants grown for 7 weeks (A), 9 weeks (B) and 12 weeks (C) under 12-h day/12-h night conditions at normal light intensity (150 µmol m−2 s−1). (D) akt2-1+pGC1:AKT2 developed a similar number of leaves as the akt2-1 knock out plants, but bolting-time was delayed. (B and E) After 9 weeks, wild-type plants were at an advanced bolting stage, akt2-1 plants had started bolting, but only initial signs of bolting were visible in akt2-1+pGC1:AKT2 plants. (C and F) At 12 weeks, akt2-1 plants had caught up with the wild-type and akt2-1+pGC1:AKT2 was just starting to bolt, although rosette-leaves were showing clear signs of senescence. For the generation of akt2-1+pGC1:AKT2, the AKT2 cDNA was fused to the guard cell-specific GC1 promoter26 kindly provided by J.I. Schroeder, San Diego. The pGC1:AKT2 construct was cloned into pGreen0229-35S by replacing the 35S promoter and then transformed into the akt2-1 knockout plant. All seeds were cold-treated for 24 h at 4°C. Plants were grown on artificial substrate (type GS-90, Einheitserde). After 2 weeks, seedlings were transferred to single pots. Plants were grown in 60% relative humidity at 21°C during the day and 18°C at night. Phenotypical analyses were done in the middle of the day. Data are shown as means ± SD of n ≥ 9 plants. Statistical analyses using Student''s t test: (D, WT/akt2-1: p < 2e-08; D, WT/pGC-AKT2: p < 2e-08; D, akt2-1/pGC-AKT2: p < 5e-03; E, WT/akt2-1: p < 4e-06; E, WT/pGC-AKT2: p < 1e-10; E, akt2-1/pGC-AKT2: p < 5e-04; F, WT/akt2-1: p = 0.51; F, WT/pGC-AKT2: p < 1e-10; F, akt2-1/pGC-AKT2: p < 1e-10).AKT2 expression is especially abundant in phloem tissues and the root stele, both of which are characterized by a poor availability of oxygen.29,30 This local internal hypoxia impairs respiratory activity of the vascular tissue and concomitantly, respiratory ATP production is reduced.31 As a consequence, phloem transport is very susceptible to decreasing oxygen supply to the plant.29,32 It is therefore comprehensible that the above mentioned support by the K+ driving force for sucrose retrieval is especially relevant in the phloem. Indeed Gajdanowicz et al.25 showed that transgenic plants lacking the AKT2 K+ channel were severely impaired in growth when exposed to mild hypoxia (10% v:v), whereas growth of wild-type plants was unaffected by this treatment. These observations illustrate the importance of biochemical flexibility in plant cells to cope with the energetic consequences of the steep oxygen concentration gradients that generally occur in plant stems and roots.In fact, the role of K+ gradients in driving sugar, amino acid and organic acid transport across plant cell membranes was first suggested several decades ago.33,34 Experimental evidence for this concept was provided by various tests in which pieces of plant tissue were incubated in solutions with different K+ concentrations and pH levels.33,34 Unfortunately, at that time the lack of genetic information to support this hypothesis (e.g., identifying transporter proteins that could provide a molecular mechanism to explain the working mechanism of substrate transport driven by a K+-motive force) resulted in this idea falling into oblivion. Indeed, the unequivocal experimental observation of this new role of K+ gradients in phloem reloading is extremely challenging. Under normal experimental conditions, K+ fluxes and sucrose fluxes are coupled during phloem loading in source tissues and unloading in sink tissues. Nonetheless, computational simulations predict that under certain conditions, a local K+/Suc antiport is also thermodynamically possible. In this antiport system, the energy from the K+ gradient is used to transport Suc into the phloem. This process is only transient; flooding the apoplast with K+ will decrease the K+ gradient. However, the gradient can be maintained for longer if surrounding cells take up the apoplastic K+ for their own use. A K+/Suc antiport will not occur in obvious sink or source tissues since the energy balances in such cells are fundamentally different. Consequently, in these tissues only the coupled symport of K+ and Suc can be observed. However, the computational predictions allowed the identification of the experimental conditions under which the effect of the K+/Suc antiport system is empirically observable at the whole plant level.An essential role in the regulation of AKT2 is played by (de)phosphorylation events of serine residues at positions S210 and S329. The replacement of both serines by asparagine (AKT2-S210N-S329N) resulted in a K+-selective leak that is locked in a continuously open mode when the channels are expressed in Xenopus oocytes. Under certain conditions, plants expressing the AKT2-S210N-S329N mutation showed growth benefits over wild-type plants; akt2-1+AKT2-S210N-S329N plants reach the generative state faster, possess an increased number of leaves and increased fresh weight (Fig. 2). Intuitively, one would expect a continuously open channel to cause severe problems for the plant, not a benefit as was observed here. We therefore have to postulate that phosphorylation at residues AKT2-S210 and AKT2-S329 is insufficient for converting AKT2 from an inward-rectifying into a non-rectifying channel; other, as yet unknown mechanisms, must contribute to the switch in the AKT2 gating mode. Such a concept would correspond to results that would otherwise be hard to explain. For instance, when both serine residues were replaced by glutamate, the mutant AKT2-S210E-S329E still showed wild-type characteristics.22 The S to E substitution is expected to mimic the phosphorylated state better than the S to N replacement. Furthermore, position AKT2-K197 has a fundamental influence on the AKT2 gating mode.23 AKT2 mutants with that particular lysine substituted with a serine are far less sensitive towards (de)phosphorylation; they display the characteristics of a pure inward-rectifying K+ channel,23 and transgenic Arabidopsis plants expressing AKT2 channels with this substitution showed the characteristics of akt2-1 knock-out plants.25 Initially, it was proposed that the positive charge is important for sensitizing AKT2 to phosphorylation. However, the charge-conserving mutant AKT2-K197R is similar to the charge inverting mutant AKT2-K197D,23 a purely inward-rectifying channel (Fig. 3). We therefore need to take into account that in plants, K197 may also be a target of post-translational modification.35 At present, we can explain the beneficial effect of the AKT2-S210N-S329N mutant on plant growth only by a multiple step regulation of AKT2 (Fig. 4). The double-N mutation would then bypass the phosphorylation step, but AKT2-S210N-S329N could still be deregulated into an inward-rectifying channel. Thus, AKT2 can be considered as a highly specialized Kin channel that can be converted into a leak-like channel by a cascade of post-translational modification steps.Open in a separate windowFigure 2Plants expressing the AKT2-S210N-S329N mutant reach the generative state faster than wild-type plants. The mutant channel AKT2-S210N-S329N was expressed under the control of the native AKT2 promoter in the akt2-1 knock-out background. (A) Photos of representative Arabidopsis thaliana plants grown 7 weeks under short day conditions (12-h day/12-h night, light intensity = 150 µE m−2s−1). Seven weeks after sowing, plants expressing only AKT2-S210N-S329N mutant channels (n = 22) differed significantly (Student''s t test, p < 4e-05) from wild-type plants (n = 20) in the height of the main inflorescent stalk (B) and fresh weight (C). At later time points, these differences decrease.25Open in a separate windowFigure 3The mutant AKT2-K197R channel is inward-rectifying. Steady-state current-voltage characteristics measured at the end of activation voltage steps. Currents were normalized to the current values measured at −145 mV in 10 mM K+ and are shown as means ± SD (n = 6).Open in a separate windowFigure 4Minimal model for AKT2 gating-mode regulation. To switch AKT2 from an inward-rectifying into a non-rectifying channel, at least two post-translational steps are postulated. (1) Phosphorylation at residues AKT2-S210 and AKT2-S329 (transitions [1]→[2] and [3]→[4]) and (2) a yet unknown modification that most likely involves the residue AKT2-K197 (transitions [1]→[3] and [2]→[4]). Only after both modifications will AKT2 allow the efflux of K+ (state [4]).  相似文献   
35.
miRNAs were recently implicated in the pathogenesis of numerous diseases, including neurological disorders such as Parkinson''s disease (PD). miRNAs are abundant in the nervous system, essential for efficient brain function and play important roles in neuronal patterning and cell specification. To further investigate their involvement in the etiology of PD, we conducted miRNA expression profiling in peripheral blood mononuclear cells (PBMCs) of 19 patients and 13 controls using microarrays. We found 18 miRNAs differentially expressed, and pathway analysis of 662 predicted target genes of 11 of these miRNAs revealed an over-representation in pathways previously linked to PD as well as novel pathways. To narrow down the genes for further investigations, we undertook a parallel approach using chromatin immunoprecipitation-sequencing (ChIP-seq) analysis to uncover genome-wide interactions of α-synuclein, a molecule with a central role in both monogenic and idiopathic PD. Convergence of ChIP-seq and miRNomics data highlighted the glycosphingolipid biosynthesis and the ubiquitin proteasome system as key players in PD. We then tested the association of target genes belonging to these pathways with PD risk, and identified nine SNPs in USP37 consistently associated with PD susceptibility in three genome-wide association studies (GWAS) datasets (0.46≤OR≤0.63) and highly significant in the meta-dataset (3.36×10−4−3). A SNP in ST8SIA4 was also highly associated with PD (p = 6.15×10−3) in the meta-dataset. These findings suggest that several miRNAs may act as regulators of both known and novel biological processes leading to idiopathic PD.  相似文献   
36.

Background

The cardiac regenerative potential of newly developed therapies is traditionally evaluated in rodent models of surgically induced myocardial ischemia. A generally accepted key parameter for determining the success of the applied therapy is the infarct size. Although regarded as a gold standard method for infarct size estimation in heart ischemia, histological planimetry is time-consuming and highly variable amongst studies. The purpose of this work is to contribute towards the standardization and simplification of infarct size assessment by providing free access to a novel semi-automated software tool. The acronym MIQuant was attributed to this application.

Methodology/Principal Findings

Mice were subject to permanent coronary artery ligation and the size of chronic infarcts was estimated by area and midline-length methods using manual planimetry and with MIQuant. Repeatability and reproducibility of MIQuant scores were verified. The validation showed high correlation (r midline length = 0.981; r area = 0.970 ) and agreement (Bland-Altman analysis), free from bias for midline length and negligible bias of 1.21% to 3.72% for area quantification. Further analysis demonstrated that MIQuant reduced by 4.5-fold the time spent on the analysis and, importantly, MIQuant effectiveness is independent of user proficiency. The results indicate that MIQuant can be regarded as a better alternative to manual measurement.

Conclusions

We conclude that MIQuant is a reliable and an easy-to-use software for infarct size quantification. The widespread use of MIQuant will contribute towards the standardization of infarct size assessment across studies and, therefore, to the systematization of the evaluation of cardiac regenerative potential of emerging therapies.  相似文献   
37.
Leishmania amazonensis and Leishmania braziliensis are the main causal agents of anergic diffuse cutaneous leishmaniasis and hyperergic mucosal leishmaniasis in man, respectively. In this work we demonstrate that intramuscular vaccination of BALB/c mice with whole antigens of L. amazonensis (LaAg) but not L. braziliensis (LbAg) results in increased susceptibility to cutaneous leishmaniasis. LaAg vaccination resulted in an increased capacity of the draining lymph nodes to produce IL-10 and TGF-beta during antigen recall responses. In vitro cultivation with LaAg but not LbAg induced increased apoptosis of CD8+ T cells. Following infection with L. amazonensis, LaAg-vaccinated mice produced significantly more TGF-beta and a higher serum IgG1/IgG2a antibody ratio compared with LbAg-vaccinated and non-vaccinated animals. The association of TGF-beta with enhanced susceptibility to infection was confirmed in mice co-vaccinated with LaAg and neutralizing anti-TGF-beta antibodies. Upon parasite challenge, these animals developed much smaller lesion sizes and parasite burdens, comparable with non-vaccinated controls. The disease-promoting effect of LaAg vaccination is not a general event, as in contrast to BALB/c, the disease outcome in C57Bl/6 mice was unaltered. Together, these findings indicate that species-specific components of L. amazonensis activate overt TGF-beta production that predisposes more susceptible individuals to aggravated disease following vaccination.  相似文献   
38.
Chromoblastomycosis is a chronic, often debilitating, suppurative, granulomatus mycosis of the skin and subcutaneous tissues beginning after inoculation trauma. It occurs world-wide, but is more frequently observed in tropical countries such as Brazil. The disease is usually insidious, and the lesions increase slowly but progressively, not responding to the usual treatments and quite often reappearing. The host defense mechanism in chromoblastomycosis has not been extensively investigated. Some studies have focused on fungus-host interaction, showing a predominantly cellular immune response, with the activation of macrophages involved in fungus phagocytosis. Although phagocytosis did occur, death of fungal cells was rarely observed. The ability of Fonsecaea pedrosoi to produce secreted or cell wall-associated melanin-like components, protects against destruction by host immune cells in vitro. Until now, the T cell immune response in chromoblastomycosis is undefined. In the present work, it was shown that, in patients with the severe form of the disease, predominant production of IL-10 cytokine, low levels of IFN-gamma and inefficient T cell proliferation were induced. In contrast, in patients with a mild form of the disease, predominant production of IFN-gamma cytokine, low levels of IL-10 and efficient T cell proliferation were observed.  相似文献   
39.
Fitness cost is usually associated with insecticide resistance and may be mitigated by increased energy accumulation and mobilization. Preliminary evidence in the maize weevil (Coleoptera: Curculionidae) suggested possible involvement of amylases in such phenomenon. Therefore, α-amylases were purified from an insecticide-susceptible and two insecticide-resistant strains (one with fitness cost [resistant cost strain], and the other without it [resistant no-cost strain]). The main α-amylase of each strain was purified by glycogen precipitation and ion-exchange chromatography (≥70-fold purification, ≤19% yield). Single α-amylase bands with the same molecular mass (53.7 kDa) were revealed for each insect strain. Higher activity was obtained at 35-40 °C and at pH 5.0-7.0 for all of the strains. The α-amylase from the resistant no-cost strain exhibited higher activity towards starch and lower inhibition by acarbose and wheat amylase inhibitors. Opposite results were observed for the α-amylase from the resistant cost strain. Although the α-amylase from the resistant cost strain exhibited higher affinity to starch (i.e., lower Km), its Vmax-value was the lowest among the strains, particularly the resistant no-cost strain. Such results provide support for the hypothesis that enhanced α-amylase activity may be playing a major role in mitigating fitness costs associated with insecticide resistance.  相似文献   
40.
Recent works have demonstrated that mast cells may have an important role in immunologic reactions and inflammation once they synthesize and secrete many cytokines including IL4, IL5, IL6 and TNF-α. We have conducted research in order to verify if mast cells would participate in the local inflammatory immune response against Paracoccidioides brasiliensis in skin lesions characterized by a Th2 pattern of cytokines. Fifty-nine skin biopsies with previous histopathological diagnosis of paracoccidioidomycosis and immunohistochemical characterization of cytokines present in the inflammatory infiltrate were classified in three groups: group 1 (G1), with compact granuloma and a Th1 pattern of cytokines; group 2 (G2), with loose granuloma and a Th2 pattern of cytokines; group 3 (G3), both kind of granuloma in the same lesion, characterized by cytokines from Th1 and Th2 patterns. Ten biopsies from normal skin were used as control group. Mast cells were visualized and quantified by a toluidine blue/HCl staining and a double immunostaining was performed to detect a co-localization of mast cells and IL10. G2 presented an increased number of mast cells when compared to G1, G3 and control group and we frequently could find mast cells expressing IL10 in G2. The data obtained suggest that mast cells participate in the immune response against P. brasiliensis in skin lesions with loose granuloma and a Th2 pattern of cytokines. Considering these results, mast cells could constitute a source of IL10, contributing to a non-effective response against fungal antigens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号